Faculty of Engineering \& Technology - Electrical \& Computer Engineering Department

First Semester 2017-2018
Allowed Time: $15 \underline{0 \text { minutes }}$

Digital Systems (ENCS234)
Total Marks: 100

Student Name : \qquad

Student ID : \qquad

ABET Outcome	Question \#	Full Mark	Student Mark
	Q\#1	20	
	Q\#2	17	
	Q\#3	20	
	Q\#4	20	
	Q\#5	23	
	TOTAL	$\mathbf{1 0 0}$	

Note: write your solution on the space provided. If you need more space, write on the back of the sheet containing the question.

Question\#1: 20 Points
Given the following function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(1,2,9,10,13,14,15)$
a) Implement the above function using NOR-NOR implementation. 6 Points
b) Implement the same function using $4^{*} 1 \mathrm{Mux}$, use A and C on the selection lines. 7 Points
c) Implement the same function using two decoders $3 * 8$ with external gates as needed. 7 Points

Question\#2: 17 Points

Consider the state table of a sequential circuit is given as below.

Present State	Next State		Output	
	$\mathrm{x}=0$	$\mathrm{x}=1$	$\mathrm{x}=0$	$\mathrm{x}=1$
a	b	d	1	0
b	d	g	0	1
c	d	b	1	0
d	e	a	1	0
e	d	c	0	1
f	e	a	1	0
g	d	e	1	0

a) How many Flip Flops are required to implement this circuit without state reductions? Why? 2 Points
b) Is this circuit a Mealy or Moore Machine? Why? 2 Points
c) Reduce the state table to a minimum number of states using implication chart method. $\mathbf{1 0}$ Points
d) Draw the reduced state diagram. 3 Points

Question\#3: 20 Points

A. For the sequential circuit shown in figure below derive the state table. 10 Points

B. Create a state diagram using as a mealy machine for a sequence detector that outputs a 1 when it detects the final bit in the serial data stream 1001. 10 Points
Example: Inputs: $11100110100100110 \ldots$
Outputs: $00000100000100100 \ldots$

Question\#4: 20 Points

A. Design a synchronous sequential circuit whose state diagram is shown below using TFFs. 10 Points

B. Using the counter shown below and logic gates design a counter that counts in the sequence $3,4,5,6,7,8,9,10,11,12,3, \ldots$ Connect all unused inputs. The counter may cycle through several unwanted states before settling into the final count sequence. Q3 is the most significant bit of the counter output. $\mathbf{1 0}$ points

Function Table for the Counter				
$\boldsymbol{C L R}$	$\boldsymbol{C L K}$	$\boldsymbol{L D}$	Count	Function
0	x	x	x	Clear to 0
1	\uparrow	1	x	Load inputs
1	\uparrow	0	1	Count next binary state
1	\uparrow	0	0	No change

Question\#5: 23 points

A. The serial adder shown in Figure below consists of two 4-bit shift registers (A and B) and a D flip-flop. Assume that the initial contents of registers A and B is 1001 and 0101, respectively. The sequence of 1011101011 is applied on the serial input of register B, answer the following: $\mathbf{8}$ Points
a. After 2 clock pulses, what would be the content of register A and B
b. After 4 clock pulses, what would be the content of register A and B

B. For the following counter circuit shown below

a) What is the count sequence for the above counter? $\mathbf{5}$ points
b) 1. Write the HDL code for the JKFF. $\mathbf{5}$ points
2. Write a structural HDL for the whole system. 5 points

